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criticism. The latter two helped to overcome stalemates in
the calculations.
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Impedance Transformations for the Generalized
Reflection Modulator

HARRY A. ATWATER, SENIOR MEMBER, IEEE

Abstract— A procedure is given for obtaining the impedance transformer
which will produce a prescribed pair of phasor reflection coefficients by
transformation from a given pair of impedance states terminating the
transformer. The transformer may be used in a general two-state reflection
modulator: as a phase shifter with phase change at constant amplitude or as
an amplitude modulator with level shift at constant or variable phase. The
condition governing the reflection coefficients available from a given pair
of impedance states is given. Examples and limitations are discussed.

I. INTRODUCTION

HE REFLECTION modulator is useful as a phase

shifter and as an amplitude modulator for digital
modulation [1]-[8]. In typical applications, the modulator
may be composed of a circulator or hybrid coupler
terminated in a pair of variable semiconductor impedance
elements. The transmission factor of the modulator is then
proportional to the reflection coefficient of the termina-
tions. The application of impedance transformation to
modify the reflection coefficients of the terminating imped-
ances was introduced by Kawakami [9] and by Kurokawa
and Schlosser [10]. In the present paper, a unified treat-
ment of the reflection phase shifter and reflection-type
amplitude modulator is provided. A procedure is given for
the calculation of the design parameters of a lossless im-
pedance transformer to produce a specified pair of reflec-
tion coefficient values from a given pair of impedance
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TABLEI
MEASURED IMPEDANCES OF GaAs SCHOTTKY DIODES AT
10 GHz

Diode Current (mA) Impedance {(Ohms)

0.0 6.-351.
0.5 17.-j45.
1.0 29.-134.
2.0 35.-j11.

states of the terminating impedances. The condition is
given which determines the reflection coefficients that are
available from any pair of impedance states. This condition
is shown to coincide with the definition of the Q2 of the
terminating impedance pair introduced by Kurokawa and
Schlosser.

The switching performance of the reflection modulator
depends inherently upon the impedance levels presented at
its reflecting terminations. The impedance characteristics
of semiconductor devices available for use are significant
for this application. The silicon p-i-n diode is frequently
employed in switching circuits because its impedance states
approach nearly ideal metal switch contact behavior. Inter-
est is presently growing in the adoption of GaAs semi-
conductor devices in microwave circuits. It is, therefore,
relevant to determine whether impedance properties typical
of GaAs devices are useful in the reflection modulator
circuits being considered. Typical measured values of GaAs
Schottky beam-leaded diode impedances at 10 GHz are
shown in Table I.
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Fig. 1. Hybrid-coupled impedances. (a) Direct terminations. (b) Imped-
ance-transformed terminations.

Because of its high impedance in all bias states, the
Schottky diode is not applicable as a simple series or shunt
switch analogous to the silicon p-i-n diode. Useful reflec-
tion modulators can be constructed using nonideal semi-
conductors, however, by introducing impedance transfor-
mation ahead of the semiconductor termination (Fig. 1). It
will be assumed in the following that the terminating
impedances of the reflection modulator are operated be-
tween a selected pair of impedance states designated Z,
and Z, which can be reached at will by the application of
suitable biases. In the case of the digital switching (ampli-
tude) modulator, ideal absorption—reflection (A /R) switch
characteristics are wanted. The ideal A/R switch is a
two-port junction having scattering matrices in the OFF and
ON states, respectively, of the form

{0 1}.
S’(l o)

OFF: ON:
{0 o0
S_(o o)

The semiconductor devices terminating an A/R switch
must be capable of dissipating the entire signal power
being transferred.

The diode impedance states shown in Table I for bias
currents of 2.0 and 0.0 mA have reflection coefficients of
0.22 and 0.89, respectively. If used as a reflection modula-
tor, their switching matrices would have the magnitudes

OFF: ON:
_{ 0. 022 _{ 0. 0.89).
S‘(ozz 0 ) S'(039 o.)

It was suggested in 1965 by Kawakami [9] that the off-state
isolation of a switching modulator could be improved by
impedance matching the off-state impedance to the system
characteristic impedance Z,,. If the oFF impedance state Z,
is transformed to Z,, (g,=0), it can be shown that the
magnitude of the reflection coefficient of impedance state
Z, transformed by the same impedance transformer is

ZZ_ZI
Z2+ZT

(1)

|g2(2Z3)|=
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where Z} is the complex conjugate of Z,. This expression
(1) remains invariant under transformation of the imped-
ances by any lossless, reciprocal network. Kawakami,
therefore, proposed it as a figure of merit for the imped-
ance state pair Z,, Z,. Equation (1) predicts a transformed
reflection coefficient magnitude | g, | of 0.86 in the example
above. For some applications, an arbitrarily selected reflec-
tion coefficient pair may be required. In the following
sections it is shown what pairs of reflection coefficients
(g, 8,) may be obtained from a given pair of impedance
states (Z,, Z,) through transformation by a lossless trans-
former network and how the design parameters of the
network may be determined.

II. IMPEDANCE TRANSFORMER NETWORK DESIGN

The derivation of the design parameters for the imped-
ance-transforming network is based on the expression for
the transformed reflection coefficient g,(Z]) appearing at
the input to the network when it is terminated by imped-
ance state Z, (i=1,2)

7Y — Z: _Z() .
gx(Zz)"Z'/_i_ZO (1-1’2) (2)
where Z, is the system characteristic impedance, assumed
to be real. If the impedance transformer is described by a
generalized network (A4, B, C, D) matrix, the transformed
impedance is given by

AZ +B
Z =
i CZ,+D

When (3) is used in (2), the result is
— (A_CZO)Zi‘"(DZO —B)
&= 4+ Cz,)Z,+(DZ, +B)

(i=1,2).

€)

(i=1,2). (4
When the transformation network is lossless, the elements
(A, B, C, D) of the network matrix reduce to (a, jb, jc,d)
where a, b, ¢, and d are pure-real quantities. For the
lossless network, (4) becomes

_ (a“jCZO)Zz _(dZO _jb)

8 = (a+jczy)Z, +(dzZy +jb) (i=1,2).

)

Defining new quantities Z,, and 7, (5) may be simplified
to

_Zl_Zm (_12
E=7Z ¥z i=1,2)

m

(6)

where Z,, =(dZ, —jb)/(a—jcZ,), Z¥ is the complex con-
jugate of Z,,, and 7 is a phase factor of unit amplitude and
angle §=—2tan"'(cZ,/a). In (6), Z,, is an impedance
parameter equal to the impedance that would be trans-
formed to Z; by the network, for which case the reflection
coefficient g vanishes.

When (6) is written for terminations Z, and Z,, the two
cases may be combined by eliminating the common factor
7, resulting in a solution for Z,, =R, +jX,, of the form

Z, =—atya’+p

m

)
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where a and B are functions of Z,, Z,, g, and g, (see
Appendix). The two-parameter description of the network
in terms of R, and X, is employed here instead of a
description in terms of the four 4, B, C, D parameters of
the network. The expressions are thereby simplified and it
is a somewhat more convenient task to design a network to
match a given impedance Z,, than to reproduce a given
(ABCD) matrix. This restricts the choice of matching
circuits to those which can be described in terms of two
parameters. There is a sufficient range of two-parameter
circuits to satisfy most matching requirements [8].

IT1I. UNIQUENESS CONDITION FOR MATCHING
NETWORK

Unique and well-defined solutions for Z,, in (7) are not
available for all arbitrarily chosen values of g, and g, with
given impedance states Z, and Z,. The allowable values of
g, and g, are restricted by a condition which arises from
(5). When (5) is written for cases i=1 and i=2 and the real
and imaginary parts separated, the result is a set of four
homogeneous equations in the unknown network parame-
ters a, b, ¢, and d. These equations will have a solution
only if the determinant of their coefficients vanishes.! The
vanishing of the determinant leads to the relation (see
Appendix)

l“l_°2|2: 12, =2,|?

01,92, R\R, ®
where o, and ¢, are reflection variables defined by
_&~1 _&~1
01—g1+1 02_82""1. ©)

In (8), 0y, 0,, g, and g, are phasor quantities in general
and o0,, and o,, are the real parts of ¢, and o,, respectively.

When (8) is rewritten in terms of g, and g, it takes the
form

— lzl”Zz|2
R\R,

4|81 _32|2

(&> -1)(1g)?-1)

This expression (10) is identical with a relation found by
Kurokawa and Schlosser [10], who defined it as the square
of the Q of the two-state impedance pair Z,, Z,. These
authors proposed (10) as the specification of a quality
factor for a switching diode which presents impedance
states Z,; and Z,. In the present analysis, (10) is seen also
to be a necessary condition for the existence of a lossless
network to generate the transformed reflection coefficients
g, and g, from Z, and Z,. Kurokawa and Schlosser cited
the importance of the assumed lossless c¢haracter of the
transformer network in determining (10). The assumption
of losslessness is seen here to limit to four the number of

=0%  (10)

'Assigning a zero value to the system determinant reduces the rank of
its matrix to 3. This in principle allows 3 unknowns to be determined in
terms of another; e.g., a/d, b/d, c/d. Then the condition for a reciprocal,
lossless circuit: ad+bc=1, allows the determination of the fourth un-
known.
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parameters (a, b, ¢, d) needed to describe the circuit. Since
only four simultaneous equations are available from the
separation of the real and imaginary parts of cases i=1
and i=2 of (5), this enables (5) to yield the system determi-
nant of the equations, providing the existence condition (8)
and (10). The assumption of a lossless transformation
network is not a serious restriction since in microstrip or
waveguide format the network will normally be con-
structed of sections of microstrip or waveguide transmis-
sion line for which the assumed lossless propagation is an
acceptable approximation.

The necessary condition (10) implies a specific relation-
ship between Z|, Z,, g,, and g,. Therefore, it is important
to avoid specifying noncommensurate values of g; and Z,
(ie., values which do not satisfy (10)) in the calculation of
Z,, by means of (7)). A Z, can be calculated by using
noncommensurate values of g, and Z, in (7), but a match-
ing network designed from this Z,, will produce reflection
coefficients g, and g, not in exact agreement with the
values initially substituted into (7), when the network is
terminated by Z, and Z,.

IV. PHASE MODULATOR

The symbols Q7 and Q7 may be defined for the left and
right sides of (10), respectively

2 48— 8|’ (11)
% e Dzl —1)

Z,—7Z,]?
oy=182l }QIR;' : (12)

The rectangular coordinates of g; and g, may be written
g, =|g|cosb, +j|g,|sin8,  (i=1,2). (13)

Using these forms in (11) with Q7 for Q7 leads to the result

2
|2 =2l cos b+ 8,12 = 2 (1~ g,2)(1 g, )

(14)
where ¢=(6, —#0,) is the phase difference between the two
reflection coefficients. In the ideal phase shifter, a change
in the phase of the output signal is required with signal
amplitude held constant. For the reflection phase shifter
this implies

l&1l=lg|=sl. (14a)

Equation (14) provides a specific relationship between
the relative signal amplitude available from a reflection-type
phase shifter and the phase shift ¢, for a given impedance
pair. From (14) and (14a) this relation is

2
m m
5 \/1+T (15)

where m? =8(1—cos $)/QZ%. The minimum transfer loss in
decibels of a reflection phase shifter is therefore 20log|g|.
A typical dependence of relative signal amplitude on phase

|gl=
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Fig, 2.

shift for the reflection-type phase shifter is shown in Fig. 2,
which was calculated from (15) with Q5 =11.62, corre-
sponding to the 0.5 and 2.0-mA impedance pair in Table I,
with (12).

V. AMPLITUDE MODULATOR

In (14), the absolute phases of g, and g, do not appear,
but only their difference ¢. From (14), if the relative signal
levels |g,| and | g,| at the output of an amplitude modula-
tor are specified, the phase shift accompanying the modu-
lation is then given by

gl +&? —(25/4)(1-|a*)(1- &)
2|g1ll &l ‘

0s ¢
(16)

Solutions for a transformation network for the ampli-
tude modulator do not exist for all arbitrarily chosen
values of g, and g,, but the existence of solutions and the
associated phase shift ¢ may be found from (16) by trial.
Alternatively, if a specific value of ¢ is assigned, the
attainable | g,| for a given | g,| may be found from (14) to
be

|8:|=|G=VF+G?| (17)
where
s
G: |gllco ¢
1+p3
rpi—lal?
1+p3

Q2
pi="F(1-1a*).
The assignment of ¢=0 is a convenient choice for the
amplitude modulator, implying an amplitude transition
with no phase shift. A ¢=0 always provides a solution for

| 83| in (17).

VI. EXAMPLES OF MODULATOR DESIGN

As an example of the versatility of the procedure out-
lined in the preceding sections, it can be shown that a
single pair of impedance states selected from Table I can
be used with suitable transformation networks to produce
a) an amplitude modulator, b) a 45° phase shifter, or ¢) a
90° phase shifter.

The impedance states from Table I which will be em-
ployed are

Z,=35—/11
Z,=6—j51.

A. Amplitude Modulator

The reflection coefficient magnitude ( g,) for the low-level
state is arbitrarily assigned a value of 0.05. It may be
assumed that no phase difference exists between g, and g,.
With no loss of generality, a phase angle of zero may be
assigned to both. Therefore, using the Z; and Z, above,
g, =0.05 (scalar), and Q7 =11.62, (17) may be employed to
find: g, =0.875. With these values, the solution of (A.14)
to (A.19) is: Z,=(34.33—7.59). A solution for Z, with
negative real part also exists, but this is discarded since it is
unrealizable by a passive network. A network is then
required which will transform the Z, of (34.33—;7.59)
ohms to the system Z;, of 50 Q. This can be done by means
of a section of transmission-line transformer of characteris-
tic impedance 392 & and electrical length 122°. This
impedance-transforming circuit is easily realizable in mi-
crostrip. The validity of the reflection-coefficient trans-
former can be verified by testing the Z, value above in
Kawakami’s condition (1) rewritten for a Z -matching
network

zZ-Z,
'gz(Zl)|—| ZI+Z:1 .

(18)

Using the given Z, and Z, values, the transformed coeffi-
cients are confirmed to be g =0.05, g,=0.875, or an
isolation of 26 dB and transmission loss of 1.2 dB. This
confirmation, as cited in Section III, is the result of having
selected g,, g,, Z,, and Z, which satisfy (10).

B. 45° Phase Shifter

For a 45° phase shift with 07 =11.62, | g,|=|g,|=0.80,
from (15). Therefore, the minimum attenuation for the 45°
phase shifter will be —1.94 dB. Suitable values of g, and g,
for use in (7) are

g, =0.80£0°=0.80+/0.0
g, =0.80 £ 45° =0.566+0.566.

Using these data and the chosen Z,, Z, in (7) produces the
network parameter: Z, =(18.15—;76.10). A simple match-
ing network to transform this impedance to Z, =50 £ can
be constructed of a single open-ended stub of electrical
length 70° connected in shunt with the line at 75.8° from
the termination.
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C. 90° Phase Shifter

From (15), a 90° phase shifter with the Z, and Z, in use
may have a reflection amplitude |g,|=]|g,|=g=0.668, or
—3.5-dB minimum loss. This data in (7) leads to a network
parameter: Z, =24.48 —j62.46. This transformation can be
realized with a single open stub of electrical length 62.6°
connected at 77° from the termination.

V. CONCLUSION

A procedure has been given for deriving the design of a
generalized two-state reflection-type modulator based on
the transformed reflection coefficients of two-state variable
impedances. The values of complex reflection coefficient
available by transformation from a given two-state imped-
ance pair are shown to be determined by a relation which
occurs as a condition for the existence of a solution for the
network parameters of the impedance transformers.

APPENDIX

The general network matrix for a lossless two-port cir-
cuit has the form
(A B ) _[a Jjb
C D je d

where a, b, ¢, and d are real. The impedance transforma-

tion by the two-port is given by
,_aZ +jb
1 jeZ,+d’

(A1)

(A2)

When (A.2) is introduced into the expresston for reflection
coefficient ((2) of the text) the result becomes

n_ (a—jcZ,) Z, = (dZ, —jb)
gl(Zl) - (a+ . N .
JeZo) Z; +(dZy +jb)

1. Necessary Condition for Transformation Network

(A.3)

Equation (A.3) is equivalent to
(g —1)Za+j(g,—1)b+j(g +1)ZZ,c+(g, +1)Zd=0.

(A4)
Introducing the reflection variable o
_8—1
o,= g 71 (A.5)
Equation (A.4) becomes
0,Z,a+jo,b+jZ,Z,c+Z,d=0. (A.6)

The complex form of o, and Z; may be written
o, =0/ +jo/’
Z =R, +jX,
when these forms are introduced into (A.6) and the real
and imaginary parts separated, the result is:
Real: (o/R, ~0/'X,)a—0"b—Zy X,c+Zy,d=0 (A.7)
Imag: (0/'R,+0/X,)a+0/b—Z,R,c=0. (A.8)

Writing (A.7) and (A.8) for cases i=1 and i=2 yiclds a
set of four homogeneous equations in the network con-
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stants a, b, c, d. These equations will have a unique solu-
tion only if the determinant of their coefficients vanishes.
This determinant is

(Ule_Uf'Xl) -0l —ZyX, Z,
(Uz'Rz “02”X2) -0y —ZyX, Z, _

’” ’ ’ —0' (A'9)
(ofR,+0iX)) o ZyR, 0
(Uz”Rz‘H’z/Xz) 0, ZyR, 0

Expanding (A.9) produces the result
(X —X,)’+(R,—R,)* _ (0{—0;)*+(0{ —0})?
R1R2 ’

010,
This equation may be written more compactly in the form

121“22|2: lo,—o|?
R|R,

e (A.10)
Equation (A.10) is a necessary condition for the ex-
istence of a solution for the network constants of an
impedance transformer which produces complex reflection
coefficients g, and g, when terminated with impedances Z,
and Z,.
II.  SOLUTION FOR NETWORK PARAMETER Z,,
Equation (A.3) may be written
z,—2Z,(a—jcZ,) Z7,-2

(2= 2575 arjezy) ~z vz (A1

where Z,, =(dZ, —jb)/(a—jcZ,) and 7 is a phase factor of
unit amplitude: n=exp (2 jtan™'(—cZ, /a)).

The versions of (A.11) for cases i=1 and i=2 may be
combined

1__ 1 Zl_Zm_ 1 ZZ——Zm

W s Zi2 n iz AP
The solution for Z?* is
MZ +P
* — m
Vi 7N (A.13)
where
(glzl_glzz)
(31_82) ( )
(3122_8221)
N=Y————— A.l5
(gl_gZ) ( )
P=2,Z,. (A.16)

Equation (A.13) may be solved for Z,, by taking its com-
plex conjugate and substituting back into itself. This leads
to the solution

Z,=—ax|B+d’ (A.17)
where
__ 1 P—P*+NN*— MM*
a=> Y ) (A.18)
_ M*P+NP*
B="N7n (A.19)
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Analysis of Open-Type Dielectric Waveguides
by the Finite-Element Iterative Method

MASATOSHI IKEUCHI, HIDEO SAWAMI, anp HIROSHI NIKI

A bstract— Dispersion characteristics for open-type dielectric waveguide
structures operated at millimeter-and submillimeter-wave frequencies are
calculated by a finite-element iterative procedure with a given criterion on
the maximum field strength at the virtual boundary. Numerical results for a
rectangular dielectric image guide are presented and compared with results
from other methods. The strip dielectric guide and the insulated image
guide with finite-or infinite-width substrates are also analyzed.

I. INTRODUCTION

ARIOUS dielectric waveguide structures operated at

millimeter-and submillimeter-wave frequencies have
been recently developed [1]-[3]. In the structure design, it
becomes important to calculate the dispersion characteris-
tics, the field distributions, and other quantities. However,
rigorous solutions have not been known except for specific
structures [4]. Many approximate and numerical methods
[1]-[10] for analyzing the various structures (see Fig. 1.)
have been presented in the past decade. Among them, the
effective dielectric constant method [1], [2], the transverse
resonance method [5], [6], and other methods [3], [7] which
cannot provide complete information on the field distribu-
tions, and it has been recently suggested [8] that [1], [2] are
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Ground Plane
(a)

:. " €2
1
(b)
AN
=1+—E€1

(©)

Fig. 1. Daelectric waveguide structures with conducting ground plane.
(a) Dielectric image gwde. (b) Strip dielectric guide for €, >¢,, in-
sulated image guide for €; <e,, single-material guide for €, =¢,. (c)
Inverted strip dielectric gude for €, <e,

the single-mode approximations. The field-matching
method [9] and the method employing the telegraphist’s
equation [10] are efficient where metallic walls are as-
sumed. The influence of the metallic wall on the inherent
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