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Impedance Transformations for the Generalized
Reflection Modulator

HARRY A. ATWATER, SENIOR MEMBER, IEEE

.4 bstrad- A procedure is given for obtaining the impedance transformer

which will produce a prescribed pair of phasor reflection coefficients by

transformation from a given pair of impedance states terminating the

transformer. The transformer may be used in a general two-state reflection

modulato~ as a phase shifter with phase change at constant amplitude or as

an amplitude modulator with level shift at constant or variable phase. The

condition governing the reflection coefficients available from a given pair

of impedance states is given. Examples and limitations are discussed.

I. INTRODUCTION

T HE REFLECTION modulator is useful as a phase

shifter and as an amplitude modulator for digital

modulation [1 ]– [8]. In typical applications, the modulator

may be composed of a circulator or hybrid coupler

terminated in a pair of variable semiconductor impedance

elements. The transmission factor of the modulator is then

proportional to the reflection coefficient of the terminat-

ions. The application of impedance transformation to

modify the reflection coefficients of the terminating imped-

ances was introduced by Kawakami [9] and by Kurokawa

and Schlosser [10]. In the present paper, a unified treat-

ment of the reflection phase shifter and reflection-type

amplitude modulator is provided. A procedure is given for

the calculation of the design parameters of a lossless im-

pedance transformer to produce a specified pair of reflec-

tion coefficient values from a given pair of impedance
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TABLE I
MEASUKED IMPEDANCES OF GAs SCHOTTKY DIODES AT

10 GHz

Diode Current (mA) Impedance (Ohms )

0.0 6.-j5l.

0.5 17. -j45.

1.0 29. -j34.

2.0 35. -jll.

states of the terminating impedances. The condition is

given which determines the reflection coefficients that are

available from any pair of impedance states. This condition

is shown to coincide with the definition of the Q 2 of the

terminating impedance pair introduced by Kurokawa and

Schlosser.

The switching performance of the reflection modulator

depends inherently upon the impedance levels presented at

its reflecting terminations. The impedance characteristics

of semiconductor devices available for use are significant

for this application. The silicon p-i-n diode is frequently

employed in switching circuits because its impedance states

approach nearly ideal metal switch contact behavior. Inter-

est is presently growing in the adoption of GaAs semi-

conductor devices in microwave circuits. It is, therefore,

relevant to determine whether impedance properties typical

of GaAs devices are useful in the reflection modulator

circuits being considered. Typical measured values of GaAs

Schottky beam-leaded diode impedances at 10’ GHz are

shown in Table I.
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(a)

(b)

Fig. 1. Hybrid-coupled impedances. (a) Direct terminations. (b) Imped-
ance-transformed terminations.

Because of its high impedance in all bias states, the

Schottky diode is not applicable as a simple series or shunt

switch analogous to the silicon p-i-n diode. Useful reflec-

tion modulators can be constructed using nonideal semi-

conductors, however, by introducing impedance transfor-

mation ahead of the semiconductor terr&ation (Fig. 1). It

will be assumed in the following that the terminating

impedances of the reflection modulator are operated be-

tween a selected pair of impedance states designated 21

and 22 which can be reached at will by the application of

suitable biases. In the case of the digital switching (ampli-

tude) modulator, ideal absorption-reflection (A/R) switch

characteristics are wanted. The ideal A/R switch is a

two-port junction having scattering matrices in the OFF and

ON states, respectively, of the form

OFF: ON:

()~=oo
00 ()~=ol.

10

The semiconductor devices terminating an A/R switch

must be capable of dissipating the entire signal power

being transferred.

The diode impedance states shown in Table I for bias

currents of 2.0 and 0.0 rnA have reflection coefficients of

0.22 and 0.89, respectively. If used as a reflection modula-

tor, their switching matrices would have the magnitudes

OFF: ON:

(~=o. 0.22
0.22 0 ) ( o. )0.89 .

‘= 0.89 0,

It was suggested in 1965 by Kawakami [9] that the off-state

isolation of a switching modulator could be improved by

impedance matching the off-state impedance to the system

characteristic impedance 2.. If the OFF impedance state Z,

is transformed to 20, (g, = O), it can be shown that the

magnitude of the reflection coefficient of impedance state

22 transformed by the same impedance transformer is

(1)

where Zy is the complex conjugate of 21. This expression

(1) remains invariant under transformation of the imped-

ances by any lossless, reciprocal network. Kawakami,

therefore, proposed it as a figure of merit for the imped-

ance state pair Z,, 22. Equation (1) predicts a transformed

reflection coefficient magnitude Igz I of 0.86 in the example

above. For some applications, an arbitrarily selected reflec-

tion coefficient pair may be required. In the following

sections it is shown what pairs of reflection coefficients

(g,, gz) may be obtained from a given pair Of impedance
states (21, 22) through transformation by a lossless trans-

former network and how the design parameters of the

network may be determined.

II. IMPEDANCE TRANSFORMER NETWORK DESIGN

The derivation of the design parameters for the imped-

ance-transforming “network is based on the expression for

the transformed reflection coefficient g, ( 2( ) appearing at

the input to the network when it is terminated by imped-

ance state Z, (i= 1, 2)

2! – 20
W;)=* (i=l,2)

o
(2)

where 20 is the system characteristic impedance, assumed

to be real. If the impedance transformer is described by a

generalized network (A, B, C, D) matrix, the transformed

impedance is given by

AZ, +B

‘;= CZi+D
(i=l,2), (3)

When (3) is used in (2), the result is

(A-CZo)Zi–(DZo-B)
gi= (A+ CZo)Zt+(DZo+B) (i=l,2). (4)

When the transformation network is lossless, the elements

(A, B, C, D) of the network matrix reduce to (a, jb, jc, d)

where a, b, c, and d are pure-real quantities. For the

lossless network, (4) becomes

(a-jcZo)Z1 - (dZo -jb)
gi = (a+jcZo)Z, +(dZo +jb) (i=l,2). (5)

Defining new quantities Z~ and q, (5) maybe simplified

to

(6)

where Zti = ( dZo —J%)/( a —jcZo ), Z; is the complex con-

jugate of Z~, and q is a phase factor of unit amplitude and
angle 0= —2 tan– 1(cZO /a). In (6), Z~ is an impedance
parameter equal to the impedance that would be trans-

formed to 20 by the network, for which case the reflection

coefficient g vanishes.

W-hen (6) is written for terminations 21 and 22, the two

cases may be combined by eliminating the common factor

~, resulting in a solution for Z~ = R~ +jX~ of the form

Zm=–a?{z (7)
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where a and ~ are functions of Zl, Z2, g,, and gz (see

Appendix). The two-parameter description of the network

in terms of R ~ and X~ is employed here instead of a

description in terms of the four A, B, C, D parameters of

the network. The expressions are thereby simplified and it

is a somewhat more convenient task to design a network to

match a given impedance Z~ than to reproduce a given

(ABCD) matrix. This restricts the choice of matching

circuits to those which can be described in terms of two

parameters. There is a sufficient range of two-parameter

circuits to satisfy most matching requirements [8].

III. UNIQUENESS CONDITION FOR MATCHING

NETWORK

Unique and well-defined solutions for Z~ in (7) are not

available for all arbitrarily chosen values of gl and gz with

given impedance states Z, and Zz. The allowable values of

g, and g2 are restricted by a condition which arises from

(5). When (5) is written for cases i= 1 and i=2 and the real

and imaginary parts separated, the result is a set of four

homogeneous equations in the unknown network parame-

ters a, b, c, and d. These equations will have a solution

only if the determinant of their coefficients vanishes.’ The

vanishing of the determinant leads to the relation (see

Appendix)

lfJ, -q12_\z, –z21’—
Olro’r RlR2

(8)

where u, and U2 are reflection variables defined by

~,=gl–l ~2=g2–1
g,+l g2+l”

(9)

parameters (a, b, c, d) needed to describe the circuit. Since

only four simultaneous equations are available from the

separation of the real and imaginary parts of cases i= 1

and i= 2 of (5), this enables (5) to yield the system determi-

nant of the equations, providing the existence condition (8)

and (10). The assumption of a lossless transformation

network is not a serious restriction since in microstrip or

waveguide format the network will normally be con-

structed of sections of rnicrostrip or waveguide transmis-

sion line for which the assumed lossless propagation is an

acceptable approximation.

The necessary condition (10) implies a specific relation-

ship between Z1, Z2, gl, and g2. Therefore, it is important
to avoid specifying noncommensurate values of gi and Z~

(i.e., values which do not satisfy (10)) in the calculation of

Z~ by means of (7)). A Z~ can be calculated by using

noncommensurate values of g, and Z, in (7), but a match-

ing network designed from this Z~ will produce reflection

coefficients gl and g2 not in exact agreement with the

values initially substituted into (7), when the network is

terminated by ZI and Z2.

IV. PHASE MODULATOR

The symbols Q; and Q; maybe defined for the left and

right sides of (10), respectively

4jg, –g2[2

‘~=(ld’-l)(lg’l’-o
/z, -Z’\’

Q;= R,R2 .

(11)

(12)

In (8), crl, U2, g,, and gz are phasor quantities in general The rectangular coordinates of g, and gz maybe written
and Ul, and rJ2, are the real parts of al and U2, respectively.

When (8) is rewritten in terms of g, and go it takes the
gZ=lg, \cos6, +jlg,lsinOI (i=l,2). (13)

form
-. -.

Using these forms in(11) with Q; for Q; leads to the result

41g, –g212 –IZ1–Z212=Q2

(lg,12-l)(lg2\2 -1) - R,R2 - (10)
lkll’-%lldcowg21’=~(l-ld9(w1721’)

This expression (10) is identical with a relation found by

Kurokawa and Schlosser [10], who defined it as the square

of the Q of the two-state impedance pair Z,, Z2. These

authors proposed (10) as the specification of a quality

factor for a switching diode which presents impedance

states Z1- and Z2. In the present analysis, (10) is seen also

to be a necessary condition for the existence of a lossless

network to generate the transformed reflection coefficients

gl and g’ from Z1 and %. Kurokawa and Schlosser cited
the importance of the assumed lossless character of the

transformer network in determining (10). The assumption

of losslessness is seen here to limit to four the number of

‘Assigning a zero vatue to the system determinant reduces the rank of
its matrix to 3. This in principle allows 3 unkuowns to be determined in
terms of anotheq e.g., a\d, b/d, c/d. Then the condition for a reciprocal,
lossless circuit: ad+ bc = 1, atlows the determination of the fourth un-
known.

(14)

where r)= (d, – 02) is the phase difference between the two

reflection coefficients. In the ideal phase shifter, a change

in the phase of the output signal is required with signal

amplitude held constant. For the reflection phase shifter

this implies

lgll=lg21=lgl. (14a)

Equation (14) provides a specific relationship between

the relative signal amplitude available from”a reflection-type

phase shifter and the phase shift ~, for a given impedance

pair. From (14) and (14a) this relation is

(15)

where m2 =8(1 —cos @)/Q~. The minimum transfer loss in

decibels of a reflection phase shifter is therefore 2010g Ig [.

A typical dependence of relative signal amplitude on phase
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~
0

PHASE SHIFT (deg)

Fig. 2. Transfer factor g versus phase shift for a reflection phase shifter
based on an impedance pair having Q; = 1I .62.

shift for the reflection-type phase shifter is shown in Fig. 2,

which was calculated from (15) with Q; = 11.62, corre-

sponding to the 0.5 and 2.O-mA impedance pair in Table I,

tith (12).

V. AMPLITUDE MODULATOR

In (14), the absolute phases of g, and gz do not appear,

but only their difference @ From (14), if the relative signal

levels Ig, I and \gz I at the outpuj of an amplitude modula-

tor are specified, the phase shift accompanying the modu-

lation is then given by

Coso= lg,12+lg212-(Q;/4)(1-lg,12)(l-lgz12)
Zlglllg’1

(16)

Solutions for a transformation network for the ampli-

tude modulator do not exist for all arbitrarily chosen

values of gl and g2, but the existence of s~lutions and the

associated phase shift @ may be found from (16) by trial.

Alternatively, if a specific value of @ is assigned, the

attainable ] g2 I for a given Igl I may be found fro”m (14) to

be

lg21=\G*~-1 (17)

where

G= lgllcos@’

1 +p;

~=l?!-lgll’

1 +p;

P;=$(l-]g,l’).

The assignment of @= O is a convenient choice for the

amplitude modulator, implying an amplitude transition

with no phase shift. A ~= O aSways provides a solution for

lg21 in (17).

VI. EXAMPLES OF MODULATOR DESIGN

As an example of the versatility of the procedure out-

lined in the preceding sections, it can be shown that a

single pair of impedance states selected from Table I can

be used with suitable transformation networks to produce

a) an amplitude modulator, b) a 450 phase shifter, or c) a

90° phase shifter.

The impedance states from Table I which will be em-

ployed are

z1=35–jll

Z2=6–j51.

A. Amplitude Modulator

The reflection coefficient magnitude ( gl ) for the low-level

state is arbitrarily assigned a value of 0.05. It may be

assumed that no phase difference exists between g, and g2.

With no loss of generality, a phase angle of zero may be

assigned to both. Therefore, using the 21 and 22 above,

gl =0.05 (scalar), and Q;= 11.62, (17) maybe employed to
find: gz =0.875. With these values, the solution of (A.14)

to (A. 19) is: Z~ = (34.33 –j7.59). A solution for Zn with

negative real part also exists, but this is discarded since it is

unrealizable by a passive network. A network is then

required which will transform the Zn of (34.33 –j7.59)

ohms to the system 20 of 50 Q. This can be done by means

of a section of transmission-line transformer of characteris-

tic impedance 39.2 Q and electrical length 122°. This

impedance-transforming circuit is easily realizable in mi-

crostrip. The validity of the reflection-coefficient trans-

former can be verified by testing the Z~ value above in

Kawakami’s condition (1) rewritten for a Z~ -matching

network

(18)

Using the given 21 and 22 values, the transformed coeffi-

cients are confirmed to be g, =0.05, gz =0.875, or an

isolation of 26 dB and transmission loss of 1.2 dB. This

confirmation, as cited in Section III, is the result of having

selected g,, g2, Z,, and 22 which satisfy (10).

B. 45° Phase Shifter

For a 45° phase shift with Q;= 11.62, Ig, I= Ig2 I=0.80,

from (15). Therefore, the minimum attenuation for the 45°

phase shifter will be – 1.94 dB. Suitable values of g, and gz

for use in (7) are

gl=0.80L00 =0.80 +j0.0

g2 =0.80 Z 45° =0.566 +jO.566.

Using these data and the chosen 21, Z2 in (7) produces the

network parameter: Z~ =(18.15 –j76. 10). A simple match-

ing network to transform this impedance to 20 =50 L? can

be constructed of a single open-ended stub of electrical

length 70° connected in shunt with the line at 75.8° from

the termination.
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C. 90° Phase Shifter

From (15), a 90° phase shifter with the Z1 and Zq in use

may have a reflection amplitude Ig, I =.1 gj I =g= 0.668, or

– 3.5-dB minimum loss. This data in (7) leads to a network

parameter: Z~ = 24.48 –j62.46. This transformation can be

realized with a single open stub of electrical length 62.6°

connected at 77° from the termination.

V. CONCLUSION

A procedure has been given for deriving the design of a

generalized two-state reflection-type modulator based on

the transformed reflection coefficients of two-state variable

impedances. The values of complex reflection coefficient

available by transformation from a given two-state imped-

ance pair are shown to be determined by a relation which

occurs as a condition for the existence of a solution for the

network parameters of the impedance transformers.

APPENDIX

The general network matrix for a Iossless two-port cir-

cuit has the form

(Al)

where a, b, c, and d are real. The impedance transforma-

tion by the two-port is given by -

q’=
aZ, +jb

jcZi + d”

When (A.2) is introduced into the expression for

coefficient ((2) of the text) the result becomes

(a-jcZO) 21 -(dZO -jb)
gz( ‘t’)= (a+jczo) 2, + (dZO +jb) “

(A.2)

reflection

(A.3)

I. Necessary Condition for Transformation Network

Equation (A.3) is equivalent to

(g, –l)Zia+j(gi –l)b+j(gi+ l) ZOZ,c+(g, +l)ZOd=O.

(A.4)

Introducing the reflection variable u

(A.5)

Equation (A.4) becomes

ulZ1a+juib+jZOZ1 c+ ZOd=O. (A.6)

The complex form of u, and Zi may be written

0, = u,’ +j”u,”

Z,= R, +jX,

when these forms are introduced into (A.6) and the real

and imaginary parts separated, the result is:

Real: (ul’R, –u,’’X, )a–ul’’ZO XZc+ZOd=O=O (A.7)

Imag: (u,”R, +ul’X, )a+ul’b– ZORZc=O. (A.8)

Writing (A.7) and (A.8) for cases i= 1 and i= 2 yields a

set of four homogeneous equations in the network con-

233

stants a, b, c, d. These equations will have a unique solu-

tion only if the determinant of their coefficients vanishes.

This determinant is

(u~R, –u;’Xl) -ufl –ZOX, Z,

(u~R, –u;X,) –u;’ –ZOX2 20

(uflRl+u~X,) u; ZOR1 O

(u;R2+u~X2) u; ZOR, O

Expanding (A.9) produces the result

=0. (A.9)

(X, –X2)2+(R, -R2)2 = (U; –0~)2+(U; –U;)2

RlR2 o~o;

This equation may be written more compactly in the form

IZ, -Z21’=IU1-CJ212
RlR2 0;0;

(A.1O)

Equation (A. 10) is a necessary condition for the ex-

istence of a solution for the network constants of an

impedance transformer which produces complex reflection

coefficients gl and g2 when terminated with impedances Zl

and Zz .

II. SOLUTION FOR NETWORX PARAMETER Z.

Equation (A.3) may be written

Zi– Zm (a–jcZO) = ‘,–Z.

gi(z;)= z, +Z; (a+jcZo) z,+z;~ (All)

where Z~ =( dZo –jb)/( a –jcZo) and q is a phase factor of

unit amplitude: q= exp (2 jtan– *( – cZo/a)).

The versions of (A. 11) for cases i= 1 and i= 2 may be

combined

1 zl–zm=~z’–zm.l=_
i gl -q+%

(A.12)
g’ z’+ z;

The solution for Z; is

z:= A4zm+P

Z~+N

where

~=_w-g2zJ

(b’,-g’)

N=_ (glzz-g’z,)
(g, -’%2)

(A.13)

(A.14)

(A.15)

P= Z,Z2. (A.16)

Equation (A. 13) may be solved for Zm by taking its com-

plex conjugate and substituting back into itself. This leads

to the solution

zm=–ak{~ (A.17)

where

~=_! P–P*+NN*–JfM*
2 M+N* “

(A.18)

~r M* P+NP*

M+N* ‘
(A.19)
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Analysis of Open-Type Dielectric Waveguides
by the Finite-Element Iterative Method

MASATOSHI IKEUCHI, HIDEO SAWAMI, AND HIROSHI NIKI

,4 frstract— Dispersion characteristics for open-typedielectric wavegoide
strnctores operated at millimeter-and submillimeter-wavefrequencies are
calculatedby a finite-element iterative procedurewith a given criterion on
the maximumfield strengthat the virtoaf boundary.Numericaf resultsfor a

rectangular dielectric image guide are presented and compared with results

from other methods. The strip dielectric guide and the insulated image

guide with finite- or infinite-width substrates are afso anafyzed.

I. INTRODUCTION

v ARIOUS dielectric waveguide structures operated at

millimeter- and submillimeter-wave frequencies have

been recently developed [ 1]– [3]. In the structure design, it

becomes important to calculate the dispersion characteris-

tics, the field distributions, and other quantities. However,

rigorous solutions have not been known except for specific

structures [4]. Many approximate and numerical methods

[1]-[10] for analyzing the various structures (see Fig. 1.)

have been presented in the past decade. Among them, the

effective dielectric constant method [1], [2], the transverse

resonance method [5], [6], and other methods [3], [7] which

cannot provide complete information on the field distribu-

tions, and it has been recently suggested [8] that [1], [2] are

Manuscnpt received July 28, 1980: revised October 29, 1980.
The authors are with the Department of Applied Mathematics, Okayama

Umverslty of Science, Okayama, 700 Japan.

Ground Plane
(a)

(b)

(c)

Fig. 1, Dielectric wavegulde structures with conducting ground plane.
(a) Dielectric image guide. (b) Strip dielectric guide for E, > c~, in-
sulated image guide for c, -Cc*, single-material guide for c, = c~. (c)
Inverted strip dielectric gmde for c, ~ Ez

the single - mode approximations. The field - matching

method [9] and the method employing the telegraphist’s

equation [10] are efficient where metallic walls are as-

sumed. The influence of the metallic wall on the inherent
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